课程描述INTRODUCTION
Python大数据核心技术实战 培训
日程安排SCHEDULE
课程大纲Syllabus
Python大数据核心技术实战 培训
一、课程学习目标
1.每个算法模块按照“原理讲解→分析数据→自己动手实现→特征与调参”的顺序。
2.“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。
3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的实际案例或Kaggle案例:广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析等。
4.强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。
5.阐述机器学习原理,提供配套源码和数据。
6.以直观解释,增强感性理解。
7.对比不同的特征选择带来的预测效果差异。
8.重视项目实践,重视落地。思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。
9.涉及和讲解的部分Python库有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。
二、课程目标:本课程特点是从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。
三、培训对象
大数据分析应用开发工程师、大数据分析项目的规划咨询管理人员、大数据分析项目的IT项目高管人员、大数据分析与挖掘处理算法应用工程师、大数据分析集群运维工程师、大数据分析项目的售前和售后技术支持服务人员
四、课程内容:
模块一:机器学习的数学基础1 - 数学分析
1.机器学习的一般方法和横向比较
2.数学是有用的:以SVD为例
3.机器学习的角度看数学
4.复习数学分析
5.直观解释常数e
6.导数/梯度
7.随机梯度下降
8.Taylor展式的落地应用
9.gini系数
10.凸函数
11.Jensen不等式
12.组合数与信息熵的关系
模块二:机器学习的数学基础2 - 概率论与贝叶斯先验
1.概率论基础
2.古典概型
3.贝叶斯公式
4.先验分布/后验分布/共轭分布
5.常见概率分布
6.泊松分布和指数分布的物理意义
7.协方差(矩阵)和相关系数
8.独立和不相关
9.大数定律和中心极限定理的实践意义
10.深刻理解*似然估计MLE和*后验估计MAP
11.过拟合的数学原理与解决方案
模块三:机器学习的数学基础3 - 矩阵和线性代数
1.线性代数在数学科学中的地位
2.马尔科夫模型
3.矩阵乘法的直观表达
4.状态转移矩阵
5.矩阵和向量组
6.特征向量的思考和实践计算
7.QR分解
8.对称阵、正交阵、正定阵
9.数据白化及其应用
10.向量对向量求导
11.标量对向量求导
12.标量对矩阵求导工作机制
模块四:Python基础1 - Python及其数学库
1.解释器Python2.7与IDE:Anaconda/Pycharm
2.Python基础:列表/元组/字典/类/文件
3.Taylor展式的代码实现
4.numpy/scipy/matplotlib/panda的介绍和典型使用
5.多元高斯分布
6.泊松分布、幂律分布
7.典型图像处理
8.蝴蝶效应
9.分形与可视化
模块五:Python基础2 - 机器学习库
1.scikit-learn的介绍和典型使用
2.损失函数的绘制
3.多种数学曲线
4.多项式拟合
5.快速傅里叶变换FFT
6.奇异值分解SVD
7.Soble/Prewitt/Laplacian算子与卷积网络
8.卷积与(指数)移动平均线
9.股票数据分析
模块六:Python基础3 - 数据清洗和特征选择
1.实际生产问题中算法和特征的关系
2.股票数据的特征提取和应用
3.一致性检验
4.缺失数据的处理
5.环境数据异常检测和分析
6.模糊数据查询和数据校正方法、算法、应用
7.朴素贝叶斯用于鸢尾花数据
8.GaussianNB/MultinomialNB/BernoulliNB
9.朴素贝叶斯用于18000+篇/Sogou新闻文本的分类
模块七:回归
1.线性回归
2.Logistic/Softmax回归
3.广义线性回归
4.L1/L2正则化
5.Ridge与LASSO
6.Elastic Net
7.梯度下降算法:BGD与SGD
8.特征选择与过拟合
模块八:Logistic回归
1.Sigmoid函数的直观解释
2.Softmax回归的概念源头
3.Logistic/Softmax回归
4.*熵模型
5.K-L散度
6.损失函数
7.Softmax回归的实现与调参
模块九:回归实践
1.机器学习sklearn库介绍
2.线性回归代码实现和调参
3.Softmax回归代码实现和调参
4.Ridge回归/LASSO/Elastic Net
5.Logistic/Softmax回归
6.广告投入与销售额回归分析
7.鸢尾花数据集的分类
8.交叉验证
9.数据可视化
模块十:决策树和随机森林
1.熵、联合熵、条件熵、KL散度、互信息
2.*似然估计与*熵模型
3.ID3、C4.5、CART详解
4.决策树的正则化
5.预剪枝和后剪枝
6.Bagging
7.随机森林
8.不平衡数据集的处理
9.利用随机森林做特征选择
10.使用随机森林计算样本相似度
11.数据异常值检测
模块十一:随机森林实践
1.随机森林与特征选择
2.决策树应用于回归
3.多标记的决策树回归
4.决策树和随机森林的可视化
5.葡萄酒数据集的决策树/随机森林分类
6.波士顿房价预测
模块十二:提升
1.提升为什么有效
2.梯度提升决策树GBDT
3.XGBoost算法详解
4.Adaboost算法
5.加法模型与指数损失
模块十三:提升实践
1.Adaboost用于蘑菇数据分类
2.Adaboost与随机森林的比较
3.XGBoost库介绍
4.Taylor展式与学习算法
5.KAGGLE简介
6.泰坦尼克乘客存活率估计
模块十四:SVM
1.线性可分支持向量机
2.软间隔的改进
3.损失函数的理解
4.核函数的原理和选择
5.SMO算法
6.支持向量回归SVR
模块十五:SVM实践
1.libSVM代码库介绍
2.原始数据和特征提取
3.葡萄酒数据分类
4.数字图像的手写体识别
5.SVR用于时间序列曲线预测
6.SVM、Logistic回归、随机森林三者的横向比较
模块十六:聚类(一)
1.各种相似度度量及其相互关系
2.Jaccard相似度和准确率、召回率
3.Pearson相关系数与余弦相似度
4.K-means与K-Medoids及变种
5.AP算法(Sci07)/LPA算法及其应用
模块十七:聚类(二)
1.密度聚类DBSCAN/DensityPeak(Sci14)
2.DensityPeak(Sci14)
3.谱聚类SC
4.聚类评价AMI/ARI/Silhouette
5.LPA算法及其应用
模块十八:聚类实践
1.K-Means++算法原理和实现
2.向量量化VQ及图像近似
3.并查集的实践应用
4.密度聚类的代码实现
5.谱聚类用于图片分割
模块十九:EM算法
1.*似然估计
2.Jensen不等式
3.朴素理解EM算法
4.*推导EM算法
5.EM算法的深入理解
6.混合高斯分布
7.主题模型pLSA
模块二十:EM算法实践
1.多元高斯分布的EM实现
2.分类结果的数据可视化
3.EM与聚类的比较
4.Dirichlet过程EM
5.三维及等高线等图件的绘制
6.主题模型pLSA与EM算法
模块二十一:主题模型LDA
1.贝叶斯学派的模型认识
2.Beta分布与二项分布
3.共轭先验分布
4.Dirichlet分布
5.Laplace平滑
6.Gibbs采样详解
模块二十二:LDA实践
1.网络爬虫的原理和代码实现
2.停止词和高频词
3.动手自己实现LDA
4.LDA开源包的使用和过程分析
5.Metropolis-Hastings算法
6.MCMC
7.LDA与word2vec的比较
8.TextRank算法与实践
模块二十三:隐马尔科夫模型HMM
1.概率计算问题
2.前向/后向算法
3.HMM的参数学习
4.Baum-Welch算法详解
5.Viterbi算法详解
6.隐马尔科夫模型的应用优劣比较
模块二十四:HMM实践
1.动手自己实现HMM用于中文分词
2.多个语言分词开源包的使用和过程分析
3.文件数据格式UFT-8、Unicode
4.停止词和标点符号对分词的影响
5.前向后向算法计算概率溢出的解决方案
6.发现新词和分词效果分析
7.高斯混合模型HMM
8.GMM-HMM用于股票数据特征提取
模块二十五:课堂提问与互动讨论
五、师资介绍
张老师:阿里大数据高级专家,国内资深的Spark、Hadoop技术专家、虚拟化专家,对HDFS、MapReduce、Hbase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生态系统中的技术进行了多年的深入的研究,更主要的是这些技术在大量的实际项目中得到广泛的应用,因此在Hadoop开发和运维方面积累了丰富的项目实施经验。近年主要典型的项目有:某电信集团网络优化、中国移动某省移动公司请账单系统和某省移动详单实时查询系统、中国银联大数据数据票据详单平台、某大型银行大数据记录系统、某大型通信运营商全国用户上网记录、某省交通部门违章系统、某区域医疗大数据应用项目、互联网公共数据大云(DAAS)和构建游戏云(Web Game Daas)平台项目等。
六、颁发证书
参加相关培训并通过考试的学员,可以获得:
工业和信息化部颁发的-《Python大数据工程师证书》。该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据。注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张。
Python大数据核心技术实战 培训
转载:http://www.nlypx.com/gkk_detail/65295.html
已开课时间Have start time
IT相关公开培训班
- 企业架构与IT战略规划培训 郭树行
- 信息安全等级保护高级培训班 讲师团
- 文档安全、黑客攻防及信息安 讲师团
- IT信息系统审计培训 余老师
- Excel在企业管理中的高 许奕
- 在软件开发流程中构筑软件质 杨学明
- 关于举办软件研发过程实战培 郭树行
- “SQL Server 2 贺伟
- 详细设计与系统架构*实践 讲师团
- 卓越软件需求分析与管理实践 郭树行
- IT治理与审计*实践 讲师团
- 系统架构与详细设计*实践 曾强华
- IT运维与流程化建设ITI 商宏图
- 大数据处理技术 — 基于H 杨老师
- 云计算与大数据处理技术 杨老师
- 国际材料数据系统新版IMD 杨老师
- 信息安全与网络攻防技术培训 赵凤伟
- 软件需求开发与需求管理 周志龙
- Oracle高级管理与性能 贾老师
IT相关内训
- 数据产品规划设计与数据化运 李禹澄
- Python在数据分析和挖 纪贺元
- Python在银行数据分析 纪贺元
- Python在数据分析中的 纪贺元
- 智联万物——物联网助力产业 李福东
- 移动互联网时代的信息化管理 张靖笙
- 《精益敏捷软件开发:22个 潘德有
- Python开发基础实战 尹传亮
- IT项目管理案例实践 陈和兰
- ITIL、IT服务管理和I 张佩星
- 算力网络发展趋势 李勇
- 行业新技术与新业务发展趋势 李勇